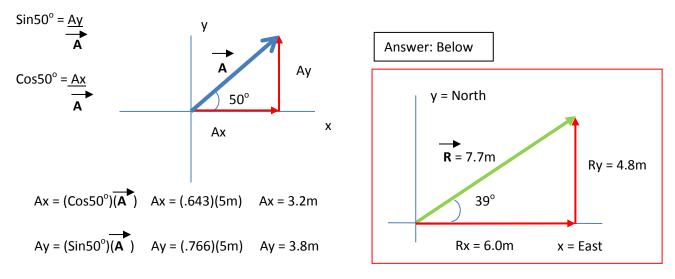
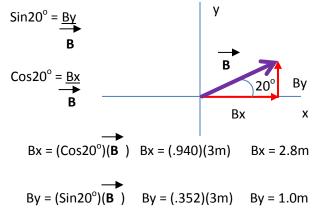
Vector Addition Example 1


Given: Two or more **vectors** to be added together to find the **Resultant** vector **R**.

Example: Vector $\overrightarrow{A} = 5.0 \text{ m}$ is 50° North of (from) East. Vector $\overrightarrow{B} = 3.0 \text{ m}$ is 20° North of (from) East 1) Draw Rough Graphical Sketch (Draw Vectors Tip-to-Tail) 20° 50° x = East

Need to find vector components for **A** and **B** and add them to get resultant components for **R**.


2) Draw a x-y coordinate system

3) Draw first vector starting from the origin and find components Ax and Ay. (Remember SOH CAH TOA)

4) Draw "another" x-y coordinate system.

5) Draw second vector starting from the origin and find components. 6) Draw table and ADD components.

Vector	x component	y component
A	Ax = 3.2m	Ay = 3.8m
B	Bx = 2.8m	By = 1.0m
→ R	Rx = 6.0m	Ry = 4.8m
$\overline{\mathbf{R}^2} = \mathrm{Rx}^2 + \mathrm{Ry}^2$		
$\mathbf{R} = \sqrt{(6.0 * 6.0) + (4.8 * 4.8)} = 7.7 \text{m}$		
Angle = Tan ⁻¹ (Ry / Rx) = 39° North of East		