Unit Conversions

Important Tips

- > Always write every number with its associated unit.
- > Always include units in your calculation.
 - \checkmark you can do the same kind of operations on units as you can on numbers
 - ✓ using units as a guide to problem solving is called *dimensional analysis*
- Conversion factors are relationships between two units
- Conversion factors can be generated from equivalence statements (e.g. 1 inch = 2.54 cm)
- > Arrange conversion factors so the starting unit is on the bottom of the first conversion factor

Conceptual Plan

related unit	related unit desired unit
$\frac{\text{given unit}}{\text{given unit}} = \text{desired unit}$	given unit × × = desired unit

Systematic Approach to Problem Solving

Convert 5.70 L to cubic inches				
•	Sort Information	Given: Desired:	5.70 in. ³	
•	Strategize	Conceptual PlanLmL cm^3 in^3		
		Relationships:	1 mL = 1 cm ³ , 1 mL = 10 ⁻³ L 1 in. = 2.54 cm.	
•	Follow the conceptual plan to solve the problem	Solution: 5.70 L × $\frac{1 \text{ mL}}{10^{-3} \text{ L}}$ × $\frac{1 \text{ cm}^3}{1 \text{ mL}}$ × $\frac{(1 \text{ in.})^3}{(2.54 \text{ cm})^3}$ = 34 <u>7</u> .835 in. ³		
•	Sig. figs. and round	Round	34 <u>7</u> .835 in. ³ = 348 in. ³ (3 sig. fig.)	
•	Check	units are correct; number makes sense: in. ³ << L		

Density as a Conversion Factor	Mass Conve		Volume	
Bonery de a conversion ractor	Density (g/cm3, g/mL)			

What is the mass in kg of 173,231 L of jet fuel whose density is 0.768 g/mL?				
Sort Information	Given:	173.231L, density = 0.768 g/mL		
	Desired:	Mass, kg		
Strategize	Conceptual Plan			
	Relationships:	1 mL = 0.768 g (from density) 1 mL = 10 ⁻³ L, 1 kg = 1000g		
Follow the conceptual plan to solve the problem	Solution: $173,231 \swarrow \times \frac{1 \text{ mL}}{10^{-3} \swarrow} \times \frac{0.768 \text{ g}}{1 \text{ mL}} \times \frac{1 \text{ kg}}{1000 \text{ g}} = 1.3304 \text{ x}10^5 \text{ kg}$			
Sig. figs. and round	Round	1.3 <u>3</u> 04 x 10⁵ kg = 1.33 x 10⁵ kg		
Check	units and number makes sense			

SI Prefix Multipliers				
Prefix	Symbol	Multiplier	Power of 10	
giga	G	1,000,000,000	Base x 10 ⁹	
mega	Μ	1,000,000	Base x 10 ⁶	
kilo	k	1,000	Base x 10 ³	
deci	d	0.1	Base x 10⁻¹	
centi	С	0.01	Base x 10 ⁻²	
milli	m	0.001	Base x 10 ⁻³	
micro	μ	0.000001	Base x 10 ⁻⁶	
mano	n	0.000000001	Base x 10 ⁻⁹	
pico	р	0.000000000001	Base x 10 ⁻¹²	

Volume $(1 \text{ mL} = 1 \text{ cm}^3)$

solid volume (cubic centimeters, cm³) 1 m³ = 10⁶ cm³ 1 cm³ = 10⁻⁶ m³ = 0.000 001 m³ liquid or gas volume (milliliters, mL) 1 mL = $0.001 \text{ L} = 10^{-3} \text{ L}$ 1L = 1 dm³ = 1000 mL = 10^{3} mL

Practice Problems

1. Use the prefix multipliers to express each measurement without any exponents.

a) 1.2 × 10⁻⁹ m

- b) 22 × 10⁻¹⁵ s
- c) 1.5×10^9 g
- d) 3.5×10^{6} L
- 2. Perform the following conversions.
 - a) 25.5 mg to g
 - b) 4.0×10^{-10} m to nm
 - c) 0. 575 mm to μm
 - d) 68.3 cm^3 to cubic meters
 - e) 242 lb to milligrams (1lb = 453.6 g)

3. The density of platinum is 21.45 g/cm³ at 20 °C. What is the volume of 87.50 g of this metal at this temperature?

4. Mercury is the only metal that is a liquid at room temperature. Its density is 13.6 g/mL. How many grams of mercury will occupy a volume of 95.8 mL?

5. Liquid nitrogen is obtained from liquefied air and is used to prepare frozen goods and in lowtemperature research. The density of the liquid at its boiling point (-196 °C) is 0.808 g/cm³. Convert the density to units of kg/m³.

References:

Tro, Chemistry: A Molecular Approach 2nd ed., Pearson Brown/LeMay/Bursten, Chemistry: The Central Science, 12th ed., Pearson

> **1**. a)1.2 nm; b) 22 fs; c) 1.5 Gg; d) 3.5 ML **2**. a) 2.55 x 10² g; b) 0.40 nm; c) 575 µm d) 6.83 x 10⁵ m³ e) 1.10 x 10⁸ mg **3**. 50.35 cm³ **4**. 1.30 x 10³ g **5**. 808 kg/m³

> > Answers