Unit Conversions

Important Tips

> Always write every number with its associated unit.
$>$ Always include units in your calculation.
\checkmark you can do the same kind of operations on units as you can on numbers
\checkmark using units as a guide to problem solving is called dimensional analysis
> Conversion factors are relationships between two units
$>$ Conversion factors can be generated from equivalence statements (e.g. $1 \mathrm{inch}=2.54 \mathrm{~cm}$)
$>$ Arrange conversion factors so the starting unit is on the bottom of the first conversion factor

Conceptual Plan

given unit $\times \frac{\text { related unit }}{\text { given unit }}=$ desired unit
given unit $\times \frac{\text { related unit }}{\text { given unit }} \times \frac{\text { desired unit }}{\text { related unit }}=$ desired unit

Systematic Approach to Problem Solving

Convert 5.70 L to cubic inches		
- Sort Information	Given: Desired:	$\begin{aligned} & 5.70 \\ & \text { in. }{ }^{3} \end{aligned}$
- Strategize	Conceptual Plan Relationships:	L \square \square mL \square cm^{3} i^{3} $\begin{aligned} & 1 \mathrm{~mL}=1 \mathrm{~cm}^{3}, 1 \mathrm{~mL}=10^{-3} \mathrm{~L} \\ & 1 \mathrm{in} .=2.54 \mathrm{~cm} . \end{aligned}$
- Follow the conceptual plan to solve the problem	Solution: $5.70 \mathrm{~L} \times \frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}} \times \frac{1 \mathrm{~cm}^{3}}{1 \mathrm{~mL}} \times \frac{(1 \mathrm{in} .)^{3}}{(2.54 \mathrm{~cm})^{3}}=34 \underline{7} .835 \mathrm{in}^{3}$	
- Sig. figs. and round	Round	347.835 in. ${ }^{3}=348 \mathrm{in} .^{3}$ (3 sig. fig.)
- Check	units are correct; number makes sense: in. ${ }^{3} \ll L$	

What is the mass in kg of $173,231 \mathrm{~L}$ of jet fuel whose density is $0.768 \mathrm{~g} / \mathrm{mL}$?		
- Sort Information	Given: Desired:	$\begin{aligned} & \text { 173.231L, density }=0.768 \mathrm{~g} / \mathrm{mL} \\ & \text { Mass, } \mathrm{kg} \end{aligned}$
- Strategize	Conceptual Plan Relationships:	$\begin{aligned} & 1 \mathrm{~mL}=0.768 \mathrm{~g} \text { (from density) } \\ & 1 \mathrm{~mL}=10^{-3} \mathrm{~L}, 1 \mathrm{~kg}=1000 \mathrm{~g} \end{aligned}$
- Follow the conceptual plan to solve the problem	Solution: $173,231 \mathrm{~K} \times \frac{1 \mathrm{mLL}}{10^{-3} \mathrm{~L}} \times \frac{0.768 \mathrm{~g}}{1 \mathrm{~mL}} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=1.3 \underline{3} 04 \times 10^{5} \mathrm{~kg}$	
- Sig. figs. and round	Round	$1.3304 \times 10^{5} \mathrm{~kg}=1.33 \times 10^{5} \mathrm{~kg}$
- Check	units and number makes sense	

SI Prefix Multipliers

Prefix	Symbol	Multiplier	Power of 10
giga	\mathbf{G}	$1,000,000,000$	Base $\times 10^{9}$
mega	\mathbf{M}	$1,000,000$	Base $\times 10^{6}$
kilo	\mathbf{k}	1,000	Base $\times 10^{3}$
deci	\mathbf{d}	0.1	Base $\times 10^{-1}$
centi	\mathbf{c}	0.01	Base 10^{-2}
milli	\mathbf{m}	0.001	Base $\times 10^{-3}$
micro	$\mathbf{\mu}$	0.0000001	Base $\times 10^{-6}$
mano	\mathbf{n}	0.0000000001	Base $\times 10^{-9}$
pico	\mathbf{p}	0.0000000000001	Base $\times 10^{-12}$

Volume ($\mathbf{1} \mathrm{mL}=1 \mathbf{c m}^{\mathbf{3}}$)
solid volume (cubic centimeters, cm^{3}) liquid or gas volume (milliliters, mL)

$$
\begin{array}{ll}
1 \mathrm{~m}^{3}=10^{6} \mathrm{~cm}^{3} & 1 \mathrm{~mL}=0.001 \mathrm{~L}=10^{-3} \mathrm{~L} \\
1 \mathrm{~cm}^{3}=10^{-6} \mathrm{~m}^{3}=0.000001 \mathrm{~m}^{3} & 1 \mathrm{~L}=1 \mathrm{dm}^{3}=1000 \mathrm{~mL}=10^{3} \mathrm{~mL}
\end{array}
$$

Practice Problems

1. Use the prefix multipliers to express each measurement without any exponents.
a) $1.2 \times 10^{-9} \mathrm{~m}$
b) $22 \times 10^{-15} \mathrm{~s}$
c) $1.5 \times 10^{9} \mathrm{~g}$
d) $3.5 \times 10^{6} \mathrm{~L}$
2. Perform the following conversions.
a) 25.5 mg to g
b) $4.0 \times 10^{-10} \mathrm{~m}$ to nm
c) 0.575 mm to $\mu \mathrm{m}$
d) $68.3 \mathrm{~cm}^{3}$ to cubic meters
e) 242 lb to milligrams $(1 \mathrm{lb}=453.6 \mathrm{~g})$
3. The density of platinum is $21.45 \mathrm{~g} / \mathrm{cm}^{3}$ at $20^{\circ} \mathrm{C}$. What is the volume of 87.50 g of this metal at this temperature?
4. Mercury is the only metal that is a liquid at room temperature. Its density is $13.6 \mathrm{~g} / \mathrm{mL}$. How many grams of mercury will occupy a volume of 95.8 mL ?
5. Liquid nitrogen is obtained from liquefied air and is used to prepare frozen goods and in lowtemperature research. The density of the liquid at its boiling point $\left(-196^{\circ} \mathrm{C}\right)$ is $0.808 \mathrm{~g} / \mathrm{cm}^{3}$. Convert the density to units of $\mathrm{kg} / \mathrm{m}^{3}$.

References:
Tro, Chemistry: A Molecular Approach $2^{\text {nd }}$ ed., Pearson
Brown/LeMay/Bursten, Chemistry: The Central Science, $12^{\text {th }}$ ed., Pearson

