Reaction Stoichiometry

 $a \mathrm{~A} \rightarrow \mathrm{~b}$ B

Use coefficients of A and B from balanced equation

The coefficients in a balanced chemical equation specify the relative amounts in moles of each of the substances involved in the reaction.

$$
\begin{gathered}
2 \mathrm{C}_{8} \mathrm{H}_{18}(I)+25 \mathrm{O}_{2}(g) \rightarrow 16 \mathrm{CO}_{2}(g)+18 \mathrm{H}_{2} \mathrm{O}(g) \\
\mathbf{2} \mathrm{mol} \mathrm{C}_{8} \mathrm{H}_{18}: \mathbf{2 5} \mathbf{m o l ~ O}_{2}: \mathbf{1 6} \mathrm{mol} \mathrm{CO}_{2}: \mathbf{1 8} \mathrm{mol} \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

How many grams of glucose can be synthesized from 37.8 g of CO_{2} in photosynthesis?	
Given Find	$\begin{aligned} & 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} 37.8 \mathrm{~g} \mathrm{CO}_{2} \\ & \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \end{aligned}$
Conceptual Plan: Relationships:	$\begin{gathered} \mathrm{g} \mathrm{CO}_{2} \Longrightarrow \mathrm{~mol} \mathrm{CO}_{2} \Longrightarrow \frac{1 \mathrm{~mol}}{\frac{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{6 \mathrm{~mol} \mathrm{CO}_{2}}} \underset{\frac{180.2 \mathrm{~g}}{1 \mathrm{~mol}}}{\mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \xrightarrow[\mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}]{ } \\ 1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.2 \mathrm{~g}, 1 \mathrm{~mol} \mathrm{CO}_{2}=44.01 \mathrm{~g}, 1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}: \mathbf{6 ~ m o l ~ C O} \end{gathered}$
Solution:	$\begin{aligned} & 37.8 \mathrm{geO}_{2} \times \frac{1{\mathrm{mot} \mathrm{CO}_{2}}_{4}^{44.01 \mathrm{geO}_{2}} \times \frac{1 \mathrm{~mol}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{6 \mathrm{~mol}_{2}} \times \frac{180.2 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{1 \mathrm{~mol}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}}{=25.8 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \\ & \end{aligned}$

How many grams of O_{2} can be made from the decomposition of 100.0 g of PbO_{2} ?	
Given Find	$\begin{aligned} & \mathbf{2} \mathbf{P b O}_{2} \rightarrow \mathbf{2} \mathbf{P b O}+\mathbf{O}_{2} 100.0 \mathrm{~g} \mathrm{PbO}_{2} \\ & \mathrm{~g} \mathrm{O}_{2} \end{aligned}$
Conceptual Plan: Relationships:	
Solution:	$\begin{aligned} & 100.0 \mathrm{~g} \mathrm{PbO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{PbO}_{2}}{239.2 \mathrm{~g} \mathrm{PbO}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{PbO}_{2}} \times \frac{32.00 \mathrm{~g} \mathrm{O}_{2}}{239.2 \mathrm{~g} \mathrm{PbO}_{2}} \\ & =6.689 \mathrm{~g} \mathrm{O}_{2} \end{aligned}$

Practice Problems

1. How many grams of water produced in the oxidation of 1.00 g of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

2. Automotive air bags inflate when sodium azide, NaN3, rapidly decomposes to its component elements;
$2 \mathrm{NaN}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{Na}(\mathrm{s})+3 \mathrm{~N}_{2}(\mathrm{~g})$
(a) How many moles of N_{2} are produced by the decomposition of 1.50 mol of NaN_{3} ?
(b) How many grams of NaN_{3} are required to form 10.0 g of nitrogen gas?

References:
Tro, Chemistry: A Molecular Approach $2^{\text {nd }}$ ed., Pearson
Brown/LeMay/Bursten, Chemistry: The Central Science, $12^{\text {th }}$ ed., Pearson

sıəMSU \forall

