

Limiting Reactant & Theoretical Yield

- The reactant that limits the amount of product is called the **limiting** reactant or limiting reagent.
- Reactants not completely consumed are called excess reactants.
- The amount of product that can be made from the limiting reactant is called the **theoretical yield**

Percent Yield = $\frac{\text{Actual Yield}}{\text{Theoretical Yield}} \times 100 \%$

How many grams of $N_2(g)$ can be made from 9.05 g of NH_3 reacting with 45.2 g of CuO? If 4.61 g of N_2 are made, what is the percent yield?

Given 9.05 g NH₃, 45.2 g CuO $g N_2$ Find Conceptual mol NH₃ g NH_a mol N₂ Plan: 1mol 1mol N₂ 17.03 g 2 mol NH₃ Choose $g N_2$ smallest 28.02 g 1mol g CuO mol Cu mol N₂ 1mol 1mol N₂ 79.55 g 3 mol CuO **Relationships:** 1 mol NH₃ = 17.03g, 1 mol CuO = 79.55g, 1 mol N₂ = 28.02 g 2 mol NH_3 : 1 mol N_2 , 3 mol CuO: 1 mol N_2

2 NH₃(g) + 3 CuO(s) \rightarrow N₂(g) + 3 Cu(s) + 3 H₂O(l)

Solution:

$$9.05 \text{ gNH}_{3} \times \frac{1 \text{ mol} \text{ NH}_{3}}{17.03 \text{ gNH}_{3}} \times \frac{1 \text{ mol} \text{ N}_{2}}{2 \text{ mol} \text{ NH}_{3}} = 0.2657 \text{ mol} \text{ N}_{2}$$

$$45.2 \text{ gCuO} \times \frac{1 \text{ mol} \text{ CuO}}{79.55 \text{ gCuO}} \times \frac{1 \text{ mol} \text{ N}_{2}}{3 \text{ mol} \text{ GuO}} = 0.1894 \text{ mol} \text{ N}_{2}$$

$$\lim_{\text{limiting reactant}} \text{ smallest moles of N}_{2}$$

$$0.1894 \text{ mol} \text{ N}_{2} \times \frac{28.02 \text{ gN}_{2}}{1 \text{ mol} \text{ N}_{2}} = 5.31 \text{ gN}_{2}$$

$$(1.1894 \text{ mol} \text{ N}_{2} \times \frac{28.02 \text{ gN}_{2}}{1 \text{ mol} \text{ N}_{2}} = 5.31 \text{ gN}_{2}$$

Percent Yield = $\frac{4.61 g N_2}{5.31 g N_2} \times 100\% = 86.8\%$ Yield

Practice Problems

1. How many moles of Si_3N_4 can be made from 1.20 moles of Si and 1.00 moles of N_2 in the reaction?

 $3 \operatorname{Si} + 2 \operatorname{N}_2 \longrightarrow \operatorname{Si}_3\operatorname{N}_4$

Conceptual Plan

2. A strip of zinc metal having a mass of 2.00 g is placed in an aqueous solution containing 2.50 g of silver nitrate, causing the following reaction to occur;

 $Zn(s) + 2 AgNO_3(aq) \longrightarrow 2 Ag(s) + Zn(NO_3)_2(aq)$

- (a) Which reactant is limiting?
- (b) How many grams of Ag will form?
- (c) How many grams of Zn(NO₃)₂ will form?
- (d) If you obtain 1.32 g of Ag from your reaction, what is the percent yield of silver?

References:

Tro, Chemistry: A Molecular Approach 2nd ed., Pearson Brown/LeMay/Bursten, Chemistry: The Central Science, 12th ed., Pearson

2. (a) AgNO₃; (b) 1.59 g; (c) 1.39 g; (d) 83.0%

[↓]N_δiS lom 004.0 .1

erswers