## Limiting Reactant \& Theoretical Yield

- The reactant that limits the amount of product is called the limiting reactant or limiting reagent.
- Reactants not completely consumed are called excess reactants.
- The amount of product that can be made from the limiting reactant is called the theoretical yield
Percent Yield $=\frac{\text { Actual Yield }}{\text { Theoretical Yield }} \times 100 \%$
How many grams of $\mathrm{N}_{2}(\mathrm{~g})$ can be made from 9.05 g of $\mathrm{NH}_{3}$ reacting with 45.2 g of CuO ? If 4.61 g of $\mathrm{N}_{2}$ are made, what is the percent yield?
$2 \mathrm{NH}_{3}(g)+3 \mathrm{CuO}(\mathrm{s}) \rightarrow \mathrm{N}_{2}(g)+3 \mathrm{Cu}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(l)$



## Solution:

$9.05 \mathrm{gNH}_{3} \times \frac{1 \mathrm{molNH}_{3}}{17.03 \mathrm{gNH}_{3}} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{2 \mathrm{~mol} \mathrm{NH}_{3}}=0.2657 \mathrm{~mol} \mathrm{~N}_{2}$
45.2 gCuO $\times \frac{1 \mathrm{mot} \mathrm{CuO}}{79.55 \mathrm{gGuO}} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{3 \mathrm{molCuO}}=0.1894 \mathrm{~mol} \mathrm{~N}_{2}$
$0.18 \underline{9} 4 \mathrm{molN}_{2} \times \frac{28.02 \mathrm{~g} \mathrm{~N}_{2}}{1 \mathrm{molN}_{2}}=5.31 \mathrm{~g} \mathrm{~N}_{2}$ theoretical yield

Percent Yield $=\frac{4.61 \mathrm{~g} \mathrm{~N}_{2}}{5.31 \mathrm{~g} \mathrm{~N}_{2}} \times 100 \%=86.8 \%$ Yield

## Practice Problems

1. How many moles of $\mathrm{Si}_{3} \mathrm{~N}_{4}$ can be made from 1.20 moles of Si and 1.00 moles of $\mathrm{N}_{2}$ in the reaction?

$$
3 \mathrm{Si}+2 \mathrm{~N}_{2} \longrightarrow \mathrm{Si}_{3} \mathrm{~N}_{4}
$$

## Conceptual Plan


2. A strip of zinc metal having a mass of 2.00 g is placed in an aqueous solution containing 2.50 g of silver nitrate, causing the following reaction to occur;

$$
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \longrightarrow 2 \mathrm{Ag}(\mathrm{~s})+\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})
$$

(a) Which reactant is limiting?
(b) How many grams of Ag will form?
(c) How many grams of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$ will form?
(d) If you obtain 1.32 g of Ag from your reaction, what is the percent yield of silver?

References:
Tro, Chemistry: A Molecular Approach $2^{\text {nd }}$ ed., Pearson
Brown/LeMay/Bursten, Chemistry: The Central Science, $12^{\text {th }}$ ed., Pearson

