CHEM099 Final Exam Review

Expected Outcomes

1. Use dimensional analysis to perform calculations and express results of calculations with correct units and number of significant figures.
2. Identify the various states of matter and describe the common physical properties of each state.
3. Identify and distinguish physical and chemical properties and changes.
4. Describe the major components of the atom and write symbols for atoms, ions, and isotopes.
5. Determine nomenclature and formulas for ionic and covalent compounds.
6. Convert moles, masses, and numbers of particles.
7. Determine percent composition and understand and apply mole concept to determine empirical and molecular formulas.
8. Balance chemical equations, classify reaction types, and determine products of reactions.
9. Use stoichiometry and balanced equations to determine amounts and masses of substances used up and produced in reactions as well as percent yields.
10. Determine solution concentrations and calculate the amounts of material s involved in solution reactions.
11. Analyze and solve problems that include a combination of concepts from various chapters.

Review Questions

1. Which of the following is a chemical change?
(A) methane gas is burned
(B) paper is shredded
(C) water is vaporized
(D) salt is dissolved in water
2. How many significant figures are in the measurement, 0.0005890 g ?
(A) 3
(B) 4
(C) 5
(D) 7
3. 850 nm is equal to:
(A) $8.5 \times 10^{9} \mathrm{~m}$
(B) $8.5 \times 10^{-9} \mathrm{~m}$
(C) $8.5 \times 10^{-7} \mathrm{~m}$
(D) $8.5 \times 10^{-10} \mathrm{~m}$
4. What answer should be reported, with the correct number of significant figures, for the following calculation?

$$
(433.621-333.9) \times 11.90=
$$

(A) 1.19×10^{3}
(B) 1.187×10^{3}
(C) 1.1868×10^{3}
(D) 1.18680×10^{3}
5. A temperature of $-31.0^{\circ} \mathrm{C}$ is equivalent to
(A) -304.2 K
(B) 304.24 K
(C) 242.2 K
(D) 329.2 K
6. A piece of metal ore weighs 8.25 g . When placed into a graduated cylinder containing water, the liquid level rises from 21.25 mL to 26.47 mL . What is the density of the ore?
(A) $0.312 \mathrm{~g} / \mathrm{mL}$
(B) $0.633 \mathrm{~g} / \mathrm{mL}$
(C) $1.58 \mathrm{~g} / \mathrm{mL}$
(D) $3.21 \mathrm{~g} / \mathrm{mL}$
7. The density of mercury is $13.6 \mathrm{~g} / \mathrm{mL}$, calculate the volume of a 20.0 g sample of mercury.
(A) 0.680 mL
(B) 6.40 mL
(C) 272 mL
(D) 1.47 mL
8. A substance with a melting point of $-218^{\circ} \mathrm{C}$ and a boiling point of $-182^{\circ} \mathrm{C}$ is a \qquad at $20^{\circ} \mathrm{C}$.
(A) Gas
(B)Liquid
(C) Solid
(D) not enough info given
9. Which of these elements is an alkaline earth metal?
A) Na
(B) Ca
(C) Cu
(D) Br
10. Which of these elements is halogen?
A) I
(B) K
(C) Kr
(D)Ba
11. Which of the following elements is a metalloid?
(A)Al
(B) Ge
(C) C
(D) Sn
12. Which of these elements exists as diatomic molecules under ordinary conditions?
(A) C
(B) P
(C) He
(D) N
13. Which of the following statements is NOT true?
(A) The neutron has a charge of +1 .
(B) The electron has a charge of -1 .
(C) The proton has a relative mass of $\sim 1 \mathrm{amu}$.
(D) The neutron has no electrical charge.
14. Atom X has 6 protons and 6 neutrons, atom Z has 6 protons and 7 neutrons. These atoms are:
(A) Isotopes
(B) Isomers
(C) Isobars
(D) None of these
15. An atom containing 19 protons, 20 neutrons, and 19 electrons has a mass number of
(A) 58
(B) 39
(C) 20
(D) 19
16. Calculate the atomic mass of silver if silver has 2 naturally occurring isotopes with the following masses and natural abundances:

Ag-107 (106.90509 amu, 51.84\%)
Ag-109 (108.90476 amu, 48.46\%)
(A) 107.90 amu
(B) 108.00 amu
(C) 107.79 amu
(D) 108.19 amu
17. What species is represented by the following information?

$$
\mathrm{p}^{+}=12 \quad \mathrm{n}=14 \quad \mathrm{e}^{-}=10
$$

(A) Si^{4+}
(B) Mg^{2+}
(C) Si^{2+}
(D) Mg
18. Calculate the mass percent composition of lithium in $\mathrm{Li}_{3} \mathrm{PO}_{4}$.
(A) 26.75%
(B) 17.98%
(C) 30.72%
(D) 55.27%
19. Which of the following compounds is ionic?
A) PH_{3}
(B) CCl_{4}
(C) NaCN
(D) NO_{2}
20. One mole of hydrogen gas contains...
(A) 1 g of H
(B) 1 atom of H
(C) 6.02×10^{23} atoms of H
(D) 1.20×10^{24} atoms of H
21. The molar mass of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ is
(A) $70 \mathrm{~g} / \mathrm{mol}$
(B) $92 \mathrm{~g} / \mathrm{mol}$
(C) $114 \mathrm{~g} / \mathrm{mol}$
(D) $132 \mathrm{~g} / \mathrm{mol}$
22. 80.16 g of Ca contains \qquad atoms of Ca .
(A) 6.02×10^{23}
(B) 1.500×10^{23}
(C) 1.204×10^{24}
(D) 2.400×10^{24}
23. How many moles of Cu are contained in 2.54 g Cu ?
(A) 0.0847
(B) 25.0
(C) 161
(D) 0.0400
24. How many grams of Ag are contained in 4.52 moles of AgNO_{3} ?
(A) 488 g
(B) 37.6 g
(C) 23.9 g
(D) 768 g
\#25 and \#26 refers to the following chemical equation.

$$
2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

25. How many moles of $\mathrm{H}_{2} \mathrm{O}$ are produced when 5.0 moles of $\mathrm{C}_{4} \mathrm{H}_{10}$ react?
(A) 5.0
(B) 10
(C) 25
(D) 50
26. How many molecules of CO_{2} are produced from 5.0 moles of $\mathrm{C}_{4} \mathrm{H}_{10}$?
(A) 8
(B) 1.20×10^{25}
(C) 80
(D) 4.82×10^{24}
27. What is the type of the following reaction? $\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
(A) synthesis reaction
(B) decomposition reaction
(C) single replacement reaction
(D) double replacement reaction
28. What is the volume of a 20.0 mL solution in cubic millimeter $\left(\mathrm{mm}^{3}\right)$?
(A) $20 \mathrm{~mm}^{3}$
(B) $0.020 \mathrm{~mm}^{3}$
(C) $20000 \mathrm{~mm}^{3}$
(D) $0.00002 \mathrm{~mm}^{3}$
29. How many moles of oxygen atoms are in 2 moles of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$?
(A) 6 moles
(B) 12 moles
(C) 3 moles
(D) 2 moles
30. A nonmetal element, X , combines with Mg to form an ionic compound with formula $\mathrm{Mg}_{3} \mathrm{X}_{2}$. What would be the ionic formula formed between Al and X ?
(A) $\mathrm{Al}_{3} \mathrm{X}_{2}$
(B) $\mathrm{Al}_{3} \mathrm{X}_{3}$
(C) $\mathrm{Al}_{2} \mathrm{X}_{3}$
(D) AlX
31. Which of the following is NOT a mixture?
(A)salt water
(B) tea
(C) air
(D) ice
32. Chlorine has two stable isotopes, $\mathrm{Cl}-35$ and $\mathrm{Cl}-37$. If their exact masses are 34.9689 amu and 36.9695 amu , respectively, what is the natural abundance of $\mathrm{Cl}-35$? (The atomic mass of chlorine is 35.45 amu .)
(A) 75.95%
(B) 24.05%
(C) 50.00%
(D) 35.00%
(E) 37.00\%
33. What is the volume of a cube with dimensions $11.0 \mathrm{~cm} \times 11.0 \mathrm{~cm} \times 11.0 \mathrm{~cm} \mathrm{in}^{3}$?
(A) 1.331×10^{-3}
(B) 1.33×10^{3}
(C) 1.33×10^{-3}
(D) 1.3×10^{3}
34. Convert $25.0 \mathrm{mi} / \mathrm{hr}$ to $\mathrm{cm} / \mathrm{sec}$. $(1 \mathrm{mi}=1.61 \mathrm{~km})$
35. Complete the following table. Use the symbol format given in the first row.

Symbol	\# Protons	\# Neutrons	\# Electrons	Mass Number
${ }^{90} \mathrm{Mo}^{+6}$				
	54		55	133

36. Balance the following equations.
a) $__{ـ} \mathrm{C}_{6} \mathrm{H}_{14}+\ldots \mathrm{O}_{2} \longrightarrow \ldots \mathrm{CO}_{2}+\ldots \ldots \mathrm{H}_{2} \mathrm{O}$
b) \qquad $\mathrm{KClO}_{3}+$ \qquad $\mathrm{HCl} \longrightarrow$ \qquad $\mathrm{KCl}+$ \qquad $\mathrm{Cl}_{2}+$ \qquad
37. Complete the following chemical equations by predicting the products.
a) $\mathrm{Na}+\mathrm{FeBr}_{3} \longrightarrow$
(B) $\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow$
c) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+\mathrm{O}_{2} \longrightarrow$
(D) $\mathrm{PbSO}_{4}+\mathrm{AgNO}_{3} \rightarrow$
e) $\mathrm{PBr}_{3} \longrightarrow$
f) $\mathrm{HBr}+\mathrm{Al} \longrightarrow$
38. Complete the following table by providing chemical formula for given names and vice versa.

Chemical Name	Chemical Formula
zinc hydroxide	
boric acid	NiS
	$\mathrm{Mg}(\mathrm{CN})_{2}$
potassium fluoride	$\mathrm{B}_{2} \mathrm{O}_{3}$
	$\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$
gold (III) nitrate	CuCO_{3}
tetraphosphorus hexasulfide	
iodic acid	

39. Consider the reaction represented by the following unbalanced equation

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO} \rightarrow \mathrm{Fe}+\mathrm{CO}_{2}
$$

a) If 27.5 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is reacted with 18.6 g of CO , what is the theoretical yield of Fe in grams?
b) If the reaction produced 14.8 g of Fe , what was its percent yield?
c) What is the limiting reactant?
d) How many grams of the excess reactant is left over at the end of the reaction?
40. An organic compound contains carbon, hydrogen and oxygen and has a molar mass of $\sim 306 \mathrm{~g} / \mathrm{mole}$. If it contains 47.01% of carbon and 5.99% hydrogen, what is its empirical AND molecular formula?
41. Consider the reaction between hydrochloric acid and zinc to produce zinc chloride and hydrogen gas.
a) How many grams of zinc is needed to completely react with 25 mL of 4.0 M hydrochloric acid?
b) How many mL of 0.35 M hydrochloric acid is needed to produce 0.234 kg of hydrogen gas?
42. An unknown element, X, has a molar mass of $112.45 \mathrm{~g} / \mathrm{mole}$ and a density of $2.34 \mathrm{~g} / \mathrm{mL}$.
a) If an 123 mL solution is 0.45 M in element X , how many actual number of X atoms does it contain?
b) How many moles of element X is in a 6.70 L sample of element X ?

ANSWERS

1. (A)
2. (B)
3. (C)
4. (A)
5. (C)
6. (C)
7. (D)
8. (A)
9. (B)
10. (A)
11. (B)
12. (D)
13. (A)
14. (A)
15. (B)
16. (D)
17. (B)
18. (B)
19. (C)
20. (D)
21. (D)
22. (C)
23. (D)
24. (A)
25. (C)
26. (B)
27. (A)
28. (C)
29. (B)
30. (D)
31. (D)
32. (A)
33. (C)
34. $\frac{25.0 \mathrm{mi}}{\mathrm{hr}} \times \frac{1.61 \mathrm{~km}}{\mathrm{mi}} \times \frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}} \times \frac{10^{2} \mathrm{~cm}}{1 \mathrm{~m}} \times \frac{1 \mathrm{hr}}{60 \mathrm{~min}} \times \frac{1 \mathrm{~min}}{60 \mathrm{sec}}=1.12 \times 10^{3} \mathrm{~cm} / \mathrm{sec}$
35.

Symbol	\# Protons	\# Neutrons	\# Electrons	Mass Number
${ }^{90} \mathbf{M o}^{+6}$	42	48	36	90
${ }^{133} \mathbf{X e}^{-}$	54	79	55	133

36. (a) $_\mathrm{C}_{6} \mathrm{H}_{14}+\underline{19} \mathrm{O}_{2} \longrightarrow \underline{12} \mathrm{CO}_{2}+\underline{14} \mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{KClO}_{3}+\ldots \mathbf{H C l} \longrightarrow \ldots \quad \mathrm{KCl}+\ldots \mathrm{Cl}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
37.

(a) $\mathrm{Na}+\mathrm{FeBr}_{3} \rightarrow \mathbf{N a B r}+\mathbf{F e}$
(b) $\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathbf{N a}_{2} \mathbf{S O}_{4}+\mathbf{H}_{2} \mathbf{O}$
(c) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+\mathrm{O}_{2} \rightarrow \quad \mathbf{C O}_{2}+\mathbf{H}_{2} \mathbf{O}$
(d) $\mathrm{PbSO}_{4}+\mathrm{AgNO}_{3} \rightarrow \mathbf{P b}\left(\mathbf{N O}_{3}\right)_{2}+\mathbf{A g}_{2} \mathbf{S O}_{4}$
(e) $\mathrm{PBr}_{3} \rightarrow \mathbf{P}+\mathbf{B r}_{2}$
(f) $\mathbf{H B r}+\mathrm{Al} \rightarrow \mathrm{AlBr}_{3}+\mathbf{H}_{\mathbf{2}}$
38.

Chemical Name	Chemical Formula
zinc hydroxide	$\mathbf{Z n (O H})_{2}$
nickel (II) sulfide	NiS
boric acid	$\mathbf{H}_{3} \mathbf{B O}_{3}(\mathbf{a q})$
magnesium cyanide	$\mathrm{Mg}(\mathrm{CN})_{2}$
potassium fluoride	$\mathbf{K F}$
diboron trioxide	$\mathrm{B}_{2} \mathrm{O}_{3}$
gold (III) nitrate	$\mathbf{A u}_{\left(\mathbf{N O}_{3}\right)_{3}}$
phosphoric acid	$\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$
tetraphosphorus hexasulfide	$\mathbf{P}_{4} \mathbf{S}_{6}$
copper (II) carbonate	CuCO_{3}
iodic acid	$\mathbf{H I O}_{3}(\mathbf{a q})$

39. Balanced Reaction: $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
a) $\quad 27.5 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3} \frac{1 \text { mole Fezo3 }}{159.7 \mathrm{Fe}^{203}} \times \frac{2 \text { mole } \mathrm{Fe}}{1 \text { mole } \mathrm{Fe} 203} \times \frac{55.85 \mathrm{gFe}}{1 \mathrm{~mole} \mathrm{Fe}}=19.2345 \mathrm{~g} \mathrm{Fe}=19.2 \mathbf{g ~ F e}$

$$
18.6 \mathrm{~g} \mathrm{CO} \times \frac{1 \text { mole Co }}{28.011 \mathrm{~g} \mathrm{Co}} \times \frac{2 \text { mole Fe }}{3 \text { mole CO }} \times \frac{55.85 \mathrm{~g} \mathrm{Fe}}{1 \text { mole Fe }}=24.724 \mathrm{~g} \mathrm{Fe}
$$

b) $\quad \frac{14.8 \mathrm{~g} \mathrm{Fe}}{19.23 \mathrm{~g} \mathrm{Fe}} \times 100=76.96 \%=77.0 \%$
c) $\quad \mathrm{Fe}_{2} \mathrm{O}_{3}$

$18.6 \mathrm{~g} \mathrm{CO}-14.470 \mathrm{~g} \mathrm{CO}=4 . \underline{13} \mathrm{~g} \mathrm{CO}=4.19 \mathrm{~g} \mathrm{CO}$ left
40. $\% \mathrm{O}=100 \%-47.01 \%-5.99 \%=47.00 \%$ oxygen
$47.01 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mole} \mathrm{C}}{12.011 \mathrm{~g} \mathrm{C}}=3.91 \mathrm{~mole} \mathrm{C}=\frac{3.91 \mathrm{~mole} \mathrm{C}}{2.94} \approx 1.33 \times 3=4 \mathrm{C}$
$5.99 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mole} \mathrm{H}}{1.0079 \mathrm{~g} \mathrm{H}}=5.94 \mathrm{~mole} \mathrm{H}=\frac{5.94 \mathrm{~mole} \mathrm{C}}{2.94} \approx 2.0 \times 3=6 \mathrm{H}$
$47.00 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mole} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=2.94 \mathrm{~mole} \mathrm{O}=\frac{2.94 \mathrm{~mole} \mathrm{O}}{2.94} \approx 1.0 \times 3=3 \mathrm{O}$

Empirical formula: $\mathbf{C}_{4} \mathbf{H}_{6} \mathbf{O}_{3}$

$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}: 102.09 \mathrm{~g} / \mathrm{mole}$
$n=\frac{\text { molar mass }}{\text { empirical formula mass }}=\frac{306 \mathrm{~g} / \mathrm{mole}}{102.09 \mathrm{~g} / \mathrm{mole}} \cong 3$
Molecular formula $=\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3} \times 3=\mathbf{C 1 2}_{\mathbf{1 2}} \mathbf{H}_{\mathbf{1 8}} \mathbf{O} \mathbf{9}_{\mathbf{9}}$
41. Balanced Reaction: $2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Zn} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
a) $\left(25 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}\right)(4.0 \mathrm{M})=0.10 \mathrm{~mole} \mathrm{HCl}$

$$
0.10 \text { mote } \mathrm{HCl} \times \frac{1 \text { mole } \mathrm{Zn}}{2 \text { mole Hel }} \times \frac{65.39 \mathrm{~g} \mathrm{Zn}}{\frac{1 \text { mote Zn }}{n}}=3.2695 \mathrm{~g} \mathrm{Zn}=3.3 \mathrm{~g} \mathrm{Zn}
$$

b) $0.234 \mathrm{~kg} \mathrm{H}_{2} \times \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}} \times \frac{1 \mathrm{~mole} \mathrm{H}_{2}}{2.0158 \mathrm{~g} \mathrm{H}_{2}} \times \frac{2 \mathrm{~mole} \mathrm{HCl}}{1 \mathrm{~mole} \mathrm{H}_{2}}=23 \underline{2} .17 \mathrm{~mole} \mathrm{HCl}$

$$
\frac{232.17 \mathrm{~mole} \mathrm{HCl}}{\mathrm{x}}=0.35 \mathrm{M} \quad \mathrm{x}=6 \underline{6} 3.3 \mathrm{~L}
$$

$663.3 \mathrm{~L} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}=663300 \mathrm{~mL}=\mathbf{6 6 0 0 0 0} \mathrm{mL}$
42. (A) $0.123 \mathrm{~L}(0.45 \mathrm{M})=0.123 \mathrm{~L} \times 0.45 \mathrm{~mole} / \mathrm{L}=0.05 \underline{5} 35 \mathrm{~mole} \mathrm{X}$

$$
\begin{aligned}
0.05535 \text { mole } \mathrm{X} \times \frac{6.02 \times 10^{23} \text { atom } \mathrm{X}}{1 \text { mole } \mathrm{X}}=3.33 \times & 10^{22} \text { atom } \mathrm{X} \\
& =\mathbf{3 . 3} \times \mathbf{1 0}^{\mathbf{2 2}} \text { atom } \mathbf{X}
\end{aligned}
$$

c) $6.70 \mathrm{~L} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}} \times \frac{2.34 \mathrm{~g}}{1 \mathrm{~mL}} \times \times \frac{1 \mathrm{~mole}}{112.45 \mathrm{~g}}=139.42 \mathrm{~mole}$

$$
\text { = } 139 \text { mole } X
$$

