CHEM099 Final Exam Review

Expected Outcomes

- 1. Use <u>dimensional analysis</u> to perform calculations and express results of calculations with correct units and number of significant figures.
- 2. <u>Identify</u> the various <u>states of matter</u> and describe the common physical properties of each state.
- 3. Identify and distinguish physical and chemical properties and changes.
- 4. Describe the major components of the atom and write symbols for atoms, ions, and isotopes.
- 5. Determine <u>nomenclature</u> and formulas for ionic and covalent compounds.
- 6. Convert moles, masses, and numbers of particles.
- 7. Determine <u>percent composition</u> and understand and apply mole concept to determine <u>empirical and molecular</u> <u>formulas</u>.
- 8. <u>Balance chemical equations</u>, classify reaction types, and determine products of reactions.
- 9. Use <u>stoichiometry</u> and balanced equations to determine <u>amounts and masses of substances used up</u> and <u>produced in</u> reactions as well as percent yields.
- 10. Determine solution concentrations and calculate the amounts of materials involved in solution reactions.
- 11. Analyze and solve problems that include a combination of concepts from various chapters.

Review Questions

1.	Which of the following is a chemical change?(A) methane gas is burned(C) water is vaporized		(B) paper is shredded(D) salt is dissolved in water		
2.	How many significant fi (A) 3	gures are in the measures (B) 4	ment, 0.0005890 g? (C) 5	(D) 7	
3.	850 nm is equal to: (A) 8.5 x 10 ⁹ m	(B) 8.5 x 10 ⁻⁹ m	(C) 8.5 x 10 ^{−7} m	(D) 8.5 x 10 ⁻¹⁰ m	
4.	 4. What answer should be reported, with the correct number of significant figures, for the following calculation? (433.621 - 333.9) x 11.90 = 				
	(A) 1.19×10^3 (B) 1.1	87 x 10^3 (C) 1	$.1868 \ge 10^3$	(D) $1.18680 \ge 10^3$	
5.	A temperature of -31.0 (A) -304.2 K	°C is equivalent to (B) 304.24 K	(C) 242.2 K	(D) 329.2 K	
6.	A piece of metal ore we from 21.25 mL to 26.47 (A) 0.312 g/mL	ighs 8.25 g. When placed mL. What is the density (B) 0.633 g/mL	d into a graduated cyl of the ore? (C) 1.58 g/mL	linder containing water, the liquid (D) 3.21 g/mL	level rises
7.	The density of mercury (A) 0.680 mL	is 13.6 g/mL, calculate (B) 6.40 mL	e the volume of a 20 (C) 272 mL	.0 g sample of mercury. (D) 1.47 mL	
8.	A substance with a me (A) Gas	lting point of —218°C (B)Liquid	and a boiling point (C) Solid	of—182°C is a at (D) not enough info given	20 °C.

9.	Which of these elements Δ N ₂	s is an alkaline earth met (B) Ca	$(\mathbf{C})\mathbf{C}\mathbf{u}$	(D)Br
	A) Na	(b) Ca	(0)00	
10.	Which of these elements A) I	is halogen? (B) K	(C) Kr	(D)Ba
11.	Which of the following (A)Al	elements is a metalloid? (B) Ge	(C) C	(D) Sn
12.	Which of these elements (A) C	s exists as diatomic mole (B) P	ecules under ordin (C) He	ary conditions? (D) N
13.	Which of the following s (A) The neutron has a c (C) The proton has a re	statements is <u>NOT</u> true? harge of +1. lative mass of \sim 1 amo	(B) The 1. (D) The	e electron has a charge of -1. e neutron has no electrical charge.
14.	Atom X has 6 proton s a (A) Isotopes	nd 6 neutrons, atom Z ha (B) Isomers	as 6 protons and 7 (C) Isobars	neutrons. These atoms are: (D)None of these
15.	An atom containing 19 I (A) 58	protons, 20 neutrons, and (B) 39	19 electrons has (C) 20	a mass number of (D) 19
16.	Calculate the atomic ma natural abundances: Ag- 107 Ag-109	ass of silver if silver has 2 7 (106.90509 amu, 51.84 9 (108.90476 amu,48.46	2 naturally occurr %) %)	ing isotopes with the following masses and
	(A) 107.90 amu	(B) 108.00 amu	(C) 107.79 amu	(D) 108.19 amu
17.	What species is represen	nted by the following inf	formation?	
	$p^+ = 12$	$n = 14$ $e^- = 10$)	
	(A) Si ⁴⁺ (B) Mg ²	2+	(C) Si ²⁺	(D) Mg
18.	Calculate the mass perce (A) 26.75 %	ent composition of lithiu (B) 17.98%	m in Li ₃ PO ₄ . (C) 30.72 %	(D) 55.27 %
19.	Which of the following A) PH ₃	compounds is ionic? (B)CCl ₄	(C) NaCN	(D) NO ₂
20.	One mole of hydrogen g (A) 1 g of H (B) 1 at	gas contains om of H (C) 6.02 x 10	²³ atoms of H	(D) 1.20 x 10 ²⁴ atoms of H
21.	The molar mass of (NH ₄)	0_2 SO ₄ is		
	(A) 70 g/mol	(B) 92 g/mol	(C) 1 14 g/mol	(D)132 g/mol
22.	80.16 g of Ca contains (A) 6.02 x10 ²³	_atoms of Ca. (B) 1.500 x10 ²³	(C) 1.204 x 10 ²⁴	(D) 2.400 x 10 ²⁴
23.	How many moles of Cu a (A) 0.0847	are contained in 2.54 g C (B) 25.0	u? (C) 161	(D) 0.0400
24.	How many grams of Ag (A) 488 g	are contained in 4.52 mo (B) 37.6 g	les of AgNO3? (C) 23.9 g	(D) 768 g

#25 and #26 refers to the following chemical equation.

	$2C_{4}H_{10}(g) + 13$	$\mathrm{SO}_2\left(\mathrm{g}\right) \to \mathrm{SCO}_2\left(\mathrm{g}\right)$	$+ 10 H_2 O(1)$			
25.	How many moles of H_2C	are produced when (B) 10	5.0 moles of C_4H_{10} read (C) 25	ct?		
	(1) 5.0	(D) 10	(C) 25	(D) 50		
26.	How many molecules of	CO_2 are produced fi	com 5.0 moles of C_4H_{10}	?		
	(A) 8	(B) 1.20×10^{25}	(C) 80	(D) 4.82×10^{24}		
27.	 7. What is the type of the following reaction? SO₃(g) + H₂O(l) → H₂SO₄(aq) (A) synthesis reaction (B) decomposition reaction (C) single replacement reaction (D) double replacement reaction 					
28.	What is the volume of a	20.0 mL solution in	cubic millimeter (mm ³))?		
	(A) 20 mm^3 (B) 0	0.020 mm^3 (0	C) 20000 mm ³	(D) 0.00002 mm ³		
29.	How many moles of oxy	ygen atoms are in 2 1	noles of $Ca(NO_3)_2$?			
	(A) 6 moles (B) 1	2 moles (C) 3 moles	(D) 2 moles		
30.	30. A nonmetal element, X, combines with Mg to form an ionic compound with formula Mg_3X_2 . What would be the ionic formula formed between Al and X?					
	(A) Al_3X_2	$(B)Al_3X_3$	(C) Al_2X_3	(D) AlX		
31	Which of the following	is NOT a mixture?				
51.	(A)salt water	(B) tea	(C) air	(D) ice		
32.	 32. Chlorine has two stable isotopes, Cl-35 and Cl-37. If their exact masses are 34.9689 amu and 36.9695 amu, respectively, what is the natural abundance of Cl-35? (The atomic mass of chlorine is 35.45 amu.) (A) 75.95% (B) 24.05% (C) 50.00% (D) 35.00% (E) 37.00% 					
33	22 . What is the exclusion of a sub-critical dimensions 11.0 survey 11.0 survey 11.0 survey 32					
55.	(A) 1.331×10^{-3} (D) 1.3×10^{3}	(B) 1.33×10^3	(C) 1.33×10^{-3}			

34. Convert 25.0 mi/hr to cm/sec. (1 mi = 1.61 km)

35. Complete the following table. Use the symbol format given in the first row.

Symbol	# Protons	# Neutrons	# Electrons	Mass Number
⁹⁰ Mo ⁺⁶				
	54		55	133

36. Balance the following equations.

- a) $C_6H_{14} + O_2 \rightarrow CO_2 + H_2O$
- b) _____ KClO₃ + ____ HCl \rightarrow ____ KCl + ____ Cl₂ + ____ H₂O

- 37. Complete the following chemical equations by predicting the products.
 - a) $Na + FeBr_3 \rightarrow$ (B) $NaOH + H_2SO_4(aq) \rightarrow$ c) $C_2H_4O_2 + O_2 \rightarrow$ (D) $PbSO_4 + AgNO_3 \rightarrow$ e) $PBr_3 \rightarrow$ f) $HBr + Al \rightarrow$
- 38. Complete the following table by providing chemical formula for given names and vice versa.

Chemical Name	Chemical Formula
zinc hydroxide	
	NiS
boric acid	
	Mg(CN) ₂
potassium fluoride	
	B_2O_3
gold (III) nitrate	
	H ₃ PO ₄ (aq)
tetraphosphorus hexasulfide	
	CuCO ₃
iodic acid	

39. Consider the reaction represented by the following unbalanced equation

 $Fe_2O_3 + CO \rightarrow Fe + CO_2$

- a) If 27.5 g of Fe_2O_3 is reacted with 18.6 g of CO, what is the theoretical yield of Fe in grams?
- b) If the reaction produced 14.8 g of Fe, what was its percent yield?
- c) What is the limiting reactant?
- d) How many grams of the excess reactant is left over at the end of the reaction?
- 40. An organic compound contains carbon, hydrogen and oxygen and has a molar mass of ~306 g/mole. If it contains 47.01% of carbon and 5.99% hydrogen, what is its empirical **AND** molecular formula?

41. Consider the reaction between hydrochloric acid and zinc to produce zinc chloride and hydrogen gas.

- a) How many grams of zinc is needed to completely react with 25 mL of 4.0 M hydrochloric acid?
- b) How many mL of 0.35 M hydrochloric acid is needed to produce 0.234 kg of hydrogen gas?

42. An unknown element, X, has a molar mass of 112.45 g/mole and a density of 2.34 g/mL.

- a) If an 123 mL solution is 0.45 M in element X, how many actual number of X atoms does it contain?
- b) How many moles of element X is in a 6.70 L sample of element X?

ANSWERS

1. (A)	2. (B)	3. (C)	4. (A)	5. (C)
6. (C)	7. (D)	8. (A)	9. (B)	10. (A)
11. (B)	12. (D)	13. (A)	14. (A)	15. (B)
16. (D)	17. (B)	18. (B)	19. (C)	20. (D)
21. (D)	22. (C)	23. (D)	24. (A)	25. (C)
26. (B)	27. (A)	28. (C)	29. (B)	30. (D)
31. (D)	32. (A)	33. (C)		

$$34. \frac{25.0 \text{ mi}}{hr} \times \frac{1.61 \text{ km}}{mi} \times \frac{10^3 \text{ m}}{1 \text{ km}} \times \frac{10^2 \text{ cm}}{1 \text{ m}} \times \frac{1 \text{ hr}}{60 \text{ min}} \times \frac{1 \text{ min}}{60 \text{ sec}} = 1.12 \text{ x } 10^3 \text{ cm/sec}$$

35.				
Symbol	# Protons	# Neutrons	# Electrons	Mass Number
⁹⁰ Mo ⁺⁶	42	48	36	90
¹³³ Xe ⁻	54	79	55	133

36. (a) 2 C₆H₁₄ + 19 O₂
$$\rightarrow$$
 12 CO₂ + 14 H₂O
b) KClO₃ + 6 HCl \rightarrow KCl + 3 Cl₂ + 3 H₂O

- 37. (a) Na + FeBr₃ \rightarrow NaBr + Fe (b) NaOH + H₂SO₄(aq) \rightarrow Na₂SO₄ + H₂O (c) C₂H₄O₂ + O₂ \rightarrow CO₂ + H₂O (d) PbSO₄ + AgNO₃ \rightarrow Pb(NO₃)₂ + Ag₂SO₄
 - (e) $PBr_3 \rightarrow P + Br_2$

(f) $HBr + Al \rightarrow AlBr_3 + H_2$

38.

Chemical Name	Chemical Formula
zinc hydroxide	Zn(OH)2
nickel (II) sulfide	NiS
boric acid	H ₃ BO ₃ (aq)
magnesium cyanide	Mg(CN) ₂
potassium fluoride	KF
diboron trioxide	B_2O_3
gold (III) nitrate	Au(NO ₃) ₃
phosphoric acid	H ₃ PO ₄ (aq)
tetraphosphorus hexasulfide	P4S6
copper (II) carbonate	CuCO ₃
iodic acid	HIO ₃ (aq)

39. Balanced Reaction: $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$

a)
$$27.5 \text{ g} \frac{1 \text{ mole Fe2O3}}{1 \text{ mole Fe2O3}} \times \frac{2 \text{ mole Fe}}{1 \text{ mole Fe2O3}} \times \frac{55.85 \text{ g} \text{ Fe}}{1 \text{ mole Fe}} = 19.2345 \text{ g} \text{ Fe} = 19.2 \text{ g} \text{ Fe}$$

$$18.6\text{g CO} \times \frac{1 \text{ mole CO}}{28.011 \text{g CO}} \times \frac{2 \text{ mole Fe}}{3 \text{ mole CO}} \times \frac{55.85 \text{ g Fe}}{1 \text{ mole Fe}} = 24.724 \text{ g Fe}$$

b)
$$\frac{14.8 \text{ g Fe}}{19.23 \text{ g Fe}} \times 100 = 76.96 \% = 77.0\%$$

c) Fe₂O₃

d)
$$27.5 \text{ g-Fe}_2O_3 \times \frac{1 \text{ mole Fe}_2O_3}{159.7 \text{g-Fe}_2O_3} \times \frac{3 \text{ mole CO}}{1 \text{ mole Fe}_2O_3} \times \frac{28.011 \text{ g-CO}}{1 \text{ mole CO}} = 14.470 \text{ g-CO} \text{ used}$$

18.6 g CO - 14.470 g CO = 4.13 g CO = 4.19 g CO left

40. % O = 100% - 47.01% - 5.99% = 47.00% oxygen

47.01 g C ×
$$\frac{1 \text{ mole C}}{12.011 \text{ g C}}$$
 = 3.91 mole C = $\frac{3.91 \text{ mole C}}{2.94}$ ≈ 1.33 × 3 = 4 C

5.99 g H
$$\times \frac{1 \text{ mole H}}{1.0079 \text{ g H}} = 5.94 \text{ mole H} = \frac{5.94 \text{ mole C}}{2.94} \approx 2.0 \times 3 = 6 \text{ H}$$

47.00 g O
$$\times \frac{1 \text{ mole O}}{16.00 \text{ g O}} = 2.94 \text{ mole O} = \frac{2.94 \text{ mole O}}{2.94} \approx 1.0 \times 3 = 3 \text{ O}$$

Empirical formula: C4H6O3

C₄H₆O₃: 102.09 g/mole

$$n = \frac{molar mass}{empirical formula mass} = \frac{306 \text{ g/mole}}{102.09 \text{ g/mole}} \cong 3$$

 $\textbf{Molecular formula} = C_4 H_6 O_3 \times 3 = \textbf{C_{12}H_{18}O_9}$

41. Balanced Reaction: 2 HCl (aq) + Zn \rightarrow ZnCl₂ + H₂

a)
$$(25 \text{ mL} \times \frac{1 \text{L}}{1000 \text{ mL}}) (4.0 \text{ M}) = 0.10 \text{ mole HCl}$$

 $0.10 \text{-mole HCl} \times \frac{1 \text{ mole } 2 \text{m}}{2 \text{ mole HCl}} \times \frac{65.39 \text{ g } 2 \text{n}}{1 \text{ mole } 2 \text{n}} = 3.2695 \text{ g } \text{Zn} = 3.3 \text{ g } \text{Zn}$

b) 0.234 kg H₂ x $\frac{1000g}{1 \text{ kg}} \times \frac{1 \text{ mole H}_2}{2.0158 \text{ g H}_2} \times \frac{2 \text{ mole HCl}}{1 \text{ mole H}_2} = 232.17 \text{ mole HCl}$

$$\frac{232.17 \text{ mole HCl}}{x} = 0.35 \text{ M} \qquad x = 663.3 \text{ L}$$

$$663.3 \text{ L} \times \frac{1000 \text{ mL}}{1 \text{ L}} = 663300 \text{ mL} = 660000 \text{ mL}$$

42. (A) 0.123 L (0.45 M) = 0.123 L \times 0.45 mole/L = 0.05535 mole X

$$0.05\underline{5}35 \text{ mole } X \times \frac{6.02 \text{ x } 10^{23} \text{ atom } X}{1 \text{ mole } X} = 3.33 \times 10^{22} \text{ atom } X$$
$$= 3.3 \times 10^{22} \text{ atom } X$$

c)
$$6.70 \text{ L} \times \frac{1000 \text{ mL}}{1 \text{ L}} \times \frac{2.34 \text{ g}}{1 \text{ mL}} \times \times \frac{1 \text{ mole}}{112.45 \text{ g}} = 139.42 \text{ mole}$$

= **139 mole X**