## Factoring Trinomials (Quadratics):

Given the equation $a x^{2}+b x+c=0$, one way to find the solutions (i.e., values of $X$ that make this equation true) is to factor the equation.

If the equation factors, then we will get the expression $(\mathrm{Px} \pm \mathrm{M})(\mathrm{Qx} \pm \mathrm{N})=0$, with solutions $\mathrm{x}=-{ }^{M} / P\left(\operatorname{or}+{ }^{M} / P\right), \mathrm{x}=-{ }^{N} / Q\left(\operatorname{or}+{ }^{N} / Q\right)$.

To see if an equation factors, we have to try different solutions to see what works.

Case 1: $a=1, c$ is positive ( $>0$ )
In this case, if $b$ is positive $(>0)$, then the expression is $(x+M)(x+N)$ and if $b$ is negative $(<0)$, then the expression is $(x-M)(x-N)$.

Now list the factors of $b$. Find the two factors whose sum is $b$ : i.e., $M+N=b$
Example: $\quad x^{2}+5 \mathrm{x}+6=0 \quad$ Here $\mathrm{a}=1, \mathrm{~b}=5>0, \mathrm{c}=6>0$
The factors of 6 are $\begin{aligned} 1 \bullet 6 \\ 2 \bullet 3\end{aligned} \longleftarrow$ Notice that $2+3=5$.
The equation factors to $(x+2)(x+3)=0$ and the solutions are $x=-2, x=-3$.

Case 2: $a=1, c$ is negative $(<0)$
In this case, the expression is $(\mathrm{x}+\mathrm{M})(\mathrm{x}-\mathrm{N})$ and b is the difference between the two factors of $b$, i.e., $C-N=b$ or $N-M=b$.

If $b$ is positive $(>0)$ then $M>N$. If $b$ is negative, then $N>M$.

Example: $\quad x^{2}+5 x-6=0 \quad$ Here $A=1, B=5>0, C=-6<0$
Notice that 6-1=5.
The equation factors to $(x-1)(x+6)=0$; solutions $x=1, x=-6$

Note: Always FOIL the expression to check that you factored the trinomial correctly.

Case 3: $a \neq 1 \quad$ Follow the rules for c and b .

You will need to list the factors of $\mathrm{a} \bullet \mathrm{C}$.
Next find the factors of $\mathrm{a} \bullet \mathrm{c}$ whose sum (or difference ) $=\mathrm{b}$.
Say the factors are M and N . Rewrite the equation, replacing bx with $\mathrm{Mx}+\mathrm{Nx}$. You should be able to look at the equation and factor again.

Let's look at an example to see how this works.

Example: $\quad 9 \mathrm{x}^{2}+58 \mathrm{x}+24=0 \quad$ Here $\mathrm{a}=9, \mathrm{~b}=58>0, \mathrm{c}=24>0, \mathrm{a} \bullet \mathrm{c}=216$

| factors of $216:$ | $1 \bullet 216$ | $4 \bullet 54$ | $9 \bullet 24$ |
| :--- | :--- | :--- | :--- |
|  | $2 \cdot 108$ | $6 \cdot 36$ | $12 \bullet 18$ |
|  | $3 \cdot 72$ | $8 \cdot 27$ |  |

Notice that $4+54=58$.

Rewrite the equation: $9 x^{2}+54 x+4 x+24=0$
Notice that 54 is divisible by 9 , and 24 is divisible by 4 . So you can factor again.
So the equation becomes: $9 \mathrm{x}^{2}+(9 \bullet 6) x+4 x+(4 \bullet 6)=0$
Or: $9 \mathrm{x} \bullet \mathrm{x}+9 \mathrm{x} \bullet 6+4 \mathrm{x}+4 \bullet 6=0$

$$
\begin{aligned}
& 9 x(x+6)+4(x+6)=0 \\
& (9 x+4)(x+6)=0 \text { and the solutions are } x=-4 / 9, x=-6
\end{aligned}
$$

Questions: Factor the following trinomials

$$
\left.\begin{array}{cccc}
\text { a) } x^{2}+8 x+16 & \text { b) } x^{2}-1(H i n t: b=0) & \text { c) } x^{2}-x-6 & \text { d) } x^{2}+x-20 \\
\text { e) } 3 x^{2}-14 x+8 & \text { f) } 4 x^{2}+12 x+5 & \text { g) } 5 x^{2}-18 x-8 & \text { h) } x^{2}+5 x+4 \\
& & \\
& & (t+x)(\tau+x)(4 & (t-x)(\tau+x)(8
\end{array}\right)
$$

